skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Soreghan, Gerilyn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2026
  2. Free, publicly-accessible full text available October 1, 2026
  3. Free, publicly-accessible full text available July 1, 2026
  4. Free, publicly-accessible full text available June 23, 2026
  5. Free, publicly-accessible full text available December 2, 2025
  6. The Permian witnessed some of the most profound climatic, biotic, and tectonic events in Earth’s history. Global orogeny leading to the assembly of Pangea culminated by middle Permian time, and included multiple orogenic belts in the equatorial Central Pangean Mountains, from the Variscan-Hercynian system in the East to the Ancestral Rocky Mountains in the West. Earth’s penultimate global icehouse peaked in early Permian time, transitioning to full greenhouse conditions by late Permian time, constituting the only example of icehouse collapse on a fully vegetated Earth. The Late Paleozoic Ice Age was the longest and most intense glaciation of the Phanerozoic. Reconstructions of atmospheric composition in the Permian record the lowest CO2 and highest O2 levels of the Phanerozoic, with average CO2 levels comparable to the Quaternary, rapidly warming climate. Fundamental shifts occurred in atmospheric circulation: a global megamonsoon developed, and the tropics became anomalously arid with time. Extreme environments are well documented in the form of voluminous dust deposits, acid-saline lakes and groundwaters, extreme continental temperatures and aridity, and major shifts in biodiversity, ultimately culminating in the largest extinction of Earth history at the Permian-Triassic boundary.The Deep Dust project seeks to elucidate paleoclimatic conditions and forcings through the Permian at temporal scales ranging from millennia to Milankovitch cycles and beyond by acquiring continuous core in continental lowlands known to harbor stratigraphically complete records dominated by loess and lacustrine strata. Our initial site is in the midcontinental U.S.— the Anadarko Basin (Oklahoma), which harbors a complete continental Permian section from western equatorial Pangaea. We will also address the nature and character of the modern and fossil microbial biosphere, the chemistry of saline lake waters and groundwaters, Mars-analog conditions, and exhumation histories of source regions. Importantly, data from Deep Dust will be integrated with Earth-system modelling. This is crucial for putting the (necessarily local) drill core data into the broader global context and for understanding relevant mechanisms and feedbacks of the Permian Earth system. 
    more » « less
    Free, publicly-accessible full text available March 18, 2026
  7. Free, publicly-accessible full text available December 2, 2025
  8. If you could time travel to the central U.S. 300 million years ago, you would find yourself at the equator of the supercontinent Pangea. At first you might enjoy a warm climate, surrounded by seas filled with life. But, after some millions of years, the seas would vanish as the climate turned increasingly hot, dry, and hostile. Billowing dust would engulf you, and nearly all life on Earth would vanish in an event called the Great Dying. How do we know? Geoscientists reconstruct past landscapes and climates by drilling into ancient sediments—tiny grains of sand and silt. These tiny particles tell us how fast the mountains rose and which way the wind blew. Microscopic fossils reveal water and air temperatures. And miniature bubbles trapped in salt preserve actual fossil water, from nearly 300 million years ago. Travel back in time with us to explore the Great Dying. 
    more » « less
  9. Free, publicly-accessible full text available December 1, 2025